

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)

B.Tech / B.Arch (Full Time) - END SEMESTER EXAMINATIONS, APR/MAY 2024

INFORMATION TECHNOLOGY

IT5023 & Fundamental of Digital Image Processing

(Regulation 2019)

Time: 3 hrs

Max. Marks: 100

On completion of the course, the students will be able to:

- CO1 Implement basic image processing operations.
- CO 2 Apply and develop new techniques in the areas of image enhancement and restoration.
- CO 3 Understand the image segmentation algorithms.
- CO 4 Extract features from images.
- CO 5 Apply classifiers and clustering algorithms for image classification and clustering.
- CO 6 Design and develop an image processing application that uses different concepts of image processing.

BL – Bloom's Taxonomy Levels

(L1-Remembering, L2-Understanding, L3-Applying, L4-Analyzing, L5-Evaluating, L6-Creating)

PART- A (10x2=20Marks)

(Answer all Questions)

Q.No	Questions	Marks	CO	BL									
1	Consider two pixels S and T with coordinates (8,9) and (1,3) respectively. Calculate the three types of distances between them.	2	1	3									
2	Define intensity level resolution. What is the effect of increasing or decreasing intensity level resolution?	2	1	2									
3	Write the steps in un-sharp masking filtering. What is the use of it?	2	2	1									
4	Perform DFT and IDFT of the following 2D image <table border="1" style="display: inline-table; vertical-align: middle;"><tr><td>1</td><td>0</td></tr><tr><td>0</td><td>1</td></tr></table>	1	0	0	1	2	2	4					
1	0												
0	1												
5	In DFT of an image, corrupted by sinusoidal noise of various frequencies, the components lie on an approximately circle about the origin. How can this noise be removed?	2	2	3									
6	What is meant by wavelet transform in the context of image input? Give one example with its shape.	2	2	2									
7	What is the meaning for gray level discontinuity in an image? List the types of it.	2	3	1									
8	Find 8-direction chain code for following image.	2	4	4									
9	A classifier is designed to identify malignant tumor in an image data set and its performance is given in the following confusion matrix. Compute accuracy. <table border="1" style="display: inline-table; vertical-align: middle;"><tr><td rowspan="2" style="text-align: center;">Actual \ Predicted →</td><td style="text-align: center;">Benign</td><td style="text-align: center;">Malignant</td></tr><tr><td style="text-align: center;">Benign</td><td style="text-align: center;">15</td><td style="text-align: center;">4</td></tr><tr><td style="text-align: center;">Malignant</td><td style="text-align: center;">3</td><td style="text-align: center;">17</td></tr></table>	Actual \ Predicted →	Benign	Malignant	Benign	15	4	Malignant	3	17	2	5	4
Actual \ Predicted →	Benign		Malignant										
	Benign	15	4										
Malignant	3	17											
10	Name four uses of unsupervised learning algorithm in image dataset.	2	6	2									

PART- B(5x 13=65Marks)
(Restrict to a maximum of 2 subdivisions)

Q.No	Questions	Marks	CO	BL																																				
11 (a) (i)	<p>Perform convolution on the 5x5 image using 3x3 mask S. Use zero padding.</p> <table border="1" style="display: inline-table; vertical-align: middle;"> <tr><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td></tr> <tr><td>0</td><td>0</td><td>0</td><td>1</td><td>1</td></tr> <tr><td>0</td><td>0</td><td>1</td><td>1</td><td>1</td></tr> <tr><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td></tr> <tr><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td></tr> </table> <div style="text-align: center; margin-left: 20px;"> <table border="1" style="display: inline-table; vertical-align: middle;"> <tr><td>0</td><td>1</td><td>0</td></tr> <tr><td>1</td><td>1</td><td>1</td></tr> <tr><td>0</td><td>1</td><td>0</td></tr> </table> <p style="margin-left: 20px;">S</p> </div>	0	0	0	0	1	0	0	0	1	1	0	0	1	1	1	0	1	0	0	1	1	1	1	1	1	0	1	0	1	1	1	0	1	0	7	1	3		
0	0	0	0	1																																				
0	0	0	1	1																																				
0	0	1	1	1																																				
0	1	0	0	1																																				
1	1	1	1	1																																				
0	1	0																																						
1	1	1																																						
0	1	0																																						
(ii)	Define the two processes involved in converting an image into digital form and explain them.	6	1	2																																				
OR																																								
11 (b)(i)	<p>Consider the image segment given below. For $V = \{0,1\}$, compute the shortest 4-path, 8-path and m-path between p and q. If a particular path does not exist, explain why.</p> <table border="1" style="display: inline-table; vertical-align: middle;"> <tr><td>3</td><td>1</td><td>2</td><td>1 (q)</td></tr> <tr><td>2</td><td>2</td><td>0</td><td>2</td></tr> <tr><td>1</td><td>2</td><td>1</td><td>1</td></tr> <tr><td>(p) 1</td><td>0</td><td>1</td><td>2</td></tr> </table>	3	1	2	1 (q)	2	2	0	2	1	2	1	1	(p) 1	0	1	2	7	1	3																				
3	1	2	1 (q)																																					
2	2	0	2																																					
1	2	1	1																																					
(p) 1	0	1	2																																					
(ii)	Explain different file formats of Digital image.	6	1	2																																				
OR																																								
12 (a) (i)	<p>Compute histogram of the given 3-bit gray scale image and perform histogram equalization for the same image.</p> <table border="1" style="display: inline-table; vertical-align: middle;"> <tr><td>3</td><td>4</td><td>7</td><td>3</td><td>0</td><td>1</td></tr> <tr><td>1</td><td>2</td><td>0</td><td>4</td><td>1</td><td>4</td></tr> <tr><td>2</td><td>0</td><td>1</td><td>6</td><td>6</td><td>1</td></tr> <tr><td>1</td><td>0</td><td>3</td><td>2</td><td>2</td><td>0</td></tr> <tr><td>6</td><td>2</td><td>1</td><td>1</td><td>3</td><td>0</td></tr> <tr><td>1</td><td>2</td><td>3</td><td>0</td><td>7</td><td>1</td></tr> </table>	3	4	7	3	0	1	1	2	0	4	1	4	2	0	1	6	6	1	1	0	3	2	2	0	6	2	1	1	3	0	1	2	3	0	7	1	10	2	4
3	4	7	3	0	1																																			
1	2	0	4	1	4																																			
2	0	1	6	6	1																																			
1	0	3	2	2	0																																			
6	2	1	1	3	0																																			
1	2	3	0	7	1																																			
(ii)	What is meant by gray level transformation? Give one example and write its use.	3	2	2																																				
OR																																								
12 (b) (i)	<p>Apply spatial domain 3x3 averaging filter on image $f(x,y)$ and obtain $g(x,y)$. Also perform spatial domain Laplacian filtering on $f(x,y)$ and obtain $L(x,y)$. Use border padding.</p> <p style="text-align: center;">$f(x,y) =$</p> <table border="1" style="display: inline-table; vertical-align: middle;"> <tr><td>200</td><td>215</td><td>212</td><td>208</td></tr> <tr><td>198</td><td>5</td><td>202</td><td>199</td></tr> <tr><td>199</td><td>207</td><td>202</td><td>1</td></tr> <tr><td>203</td><td>218</td><td>210</td><td>2</td></tr> </table>	200	215	212	208	198	5	202	199	199	207	202	1	203	218	210	2	10	2	4																				
200	215	212	208																																					
198	5	202	199																																					
199	207	202	1																																					
203	218	210	2																																					
(ii)	Write down the step in performing filtering in frequency domain.	3	2	2																																				

13 (a)(i)	What is the need for multiresolution analysis? Explain pyramidal coding technique for representing multiresolution information efficiently.	6	2	3
-----------	---	---	---	---

Decompose the given image into different frequency bands using sub band coding. Use simple averaging as low pass filter and simple differencing as high pass filter.

121	122	113	99
100	96	89	81
80	79	75	73
74	76	75	76

7 2 4

OR

13 (b)(i)	Explain Gaussian & Rayleigh noise models and geometric mean noise removal scheme.	6	2	3
-----------	---	---	---	---

Identify the noise in the given image. Apply the appropriate filtering technique to remove the noise. Use border padding.

126	128	128	255	126
127	0	132	128	128
130	127	0	128	127
128	255	128	255	128
125	131	126	128	0

7 2 4

14 (a)(i)	What is meant by edge linking? Explain local edge linking method.	6	4	2
(ii)	Explain Canny edge detection method with an example.	7	3	2

OR

14 (b) (i)	What is use of Scale Invariant Feature Transform (SIFT) algorithm? Explain how scale invariant is achieved in SIFT algorithm.	6	4	2
(ii)	Explain how an efficient optimal thresholding can be obtained using Otsu's method.	7	3	2

15 (a) (i)	Define Precision, Recall and F1 score.	3	5	2
(ii)	Explain Support Vector Machine classification algorithm with an example.	10	5	3

OR

15 (b) (i)	Distinguish supervised and unsupervised learning algorithms.	3	5	2
(ii)	Explain simple linkage and complete linkage agglomerative clustering algorithm with example.	10	5	3

PART- C(1x 15=15Marks)

(Q.No.16 is compulsory)

Q.No	Questions	Marks	CO	BL																																																	
16. (i)	<p>Explain region growing segmentation algorithm. Apply the same on the following image matrix and show the segmented regions. Choose the shaded pixels as seed pixels and use this equation $g(\text{seedi}) - g(\text{pixel}) < T$ for $T=1$.</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr><td>9</td><td>9</td><td>9</td><td>9</td><td>8</td><td>8</td><td>7</td></tr> <tr><td>9</td><td>9</td><td>9</td><td>9</td><td>8</td><td>8</td><td>7</td></tr> <tr><td>8</td><td>8</td><td>8</td><td>8</td><td>8</td><td>8</td><td>7</td></tr> <tr><td>7</td><td>7</td><td>7</td><td>7</td><td>7</td><td>7</td><td>7</td></tr> <tr><td>7</td><td>7</td><td>5</td><td>5</td><td>5</td><td>5</td><td>5</td></tr> <tr><td>7</td><td>7</td><td>7</td><td>7</td><td>5</td><td>5</td><td>5</td></tr> <tr><td>7</td><td>7</td><td>7</td><td>7</td><td>5</td><td>5</td><td>5</td></tr> </table>	9	9	9	9	8	8	7	9	9	9	9	8	8	7	8	8	8	8	8	8	7	7	7	7	7	7	7	7	7	7	5	5	5	5	5	7	7	7	7	5	5	5	7	7	7	7	5	5	5	9	3	5
9	9	9	9	8	8	7																																															
9	9	9	9	8	8	7																																															
8	8	8	8	8	8	7																																															
7	7	7	7	7	7	7																																															
7	7	5	5	5	5	5																																															
7	7	7	7	5	5	5																																															
7	7	7	7	5	5	5																																															
(ii)	<p>A visual platform (like Pinterest) at its core needs to understand and act on images. The users can bookmark images to create folders which act as make-shift blogs. Also they can search interested images using key words or key image. To enhance their performance and make it more user friendly, they want to apply machine learning algorithms. Identify which algorithms and explain how they can be used.</p>	6	6	6																																																	

